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ABSTRACT 
In this paper, radix-2 algorithms for computation of type-II discrete sine transform (DST-II) and type-IV 

discrete sine transform (DST-IV), each of length ( 2,3,.....)2
m

mN  , are presented. The odd-indexed 

output components of DST-II can be realized using simple recursive relations. The recursive algorithms are 

appropriate for VLSI implementation. The DST-IV of length N can be computed from type-II discrete cosine 

transform (DCT-II) and DST-II sequences, each of length N/2.  
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I. INTRODUCTION 

Discrete transforms play a significant role in digital signal processing. Discrete cosine transform     (DCT) 

and discrete sine transform (DST) are used as key functions in many signal and image processing applications. 

There are eight types of DCT and DST. Of these, the DCT-II, DST-II, DCT-IV, and DST-IV have gained 

popularity. The DCT and DST transform of types I, II, III and IV, form a group of so-called “even” sinusoidal 

transforms. Much less known is group of so-called “odd” sinusoidal transforms: DCT and DST of types V, VI, 

VII and VIII. 

The original definition of the DCT introduced by Ahmed et al. in 1974 [1] was one-dimensional (1-D) and 

suitable for 1-D digital signal processing. The DCT has found wide applications in speech and image processing 

as well as telecommunication signal processing for the purpose of data compression, feature extraction, image 

reconstruction, and filtering. Thus, many algorithms and VLSI architectures for the fast computation of DCT 

have been proposed [2]-[7]. Among those algorithms [6] and [7] are believed to be most efficient two-

dimensional DCT algorithms in the sense of minimizing any measure of computational complexity. 

The DST was first introduced to the signal processing by Jain [8], and several versions of this original DST 

were later developed by Kekre et al. [9], Jain [10] and Wang et al. [11].   Ever since the introduction of the first 

version of the DST, the different DST’s have found wide applications in several areas in Digital signal 

processing (DSP), such as image processing[8,12,13], adaptive digital filtering[14] and interpolation[15]. The 

performance of DST can be compared to that of the discrete cosine transform (DCT) and it may therefore be 

considered as a viable alternative to the DCT.  For images with high correlation, the DCT yields better results; 

however, for images with a low correlation of coefficients, the DST yields lower bit rates [16]. Yip and Rao [17] 

have proven that for large sequence length (N ≥ 32) and low correlation coefficient (< 0.6), the DST performs 

even better than the DCT. 

In this paper, radix-2 algorithms for computation of type-II DST and type-IV DST, each of length

( 2,3,.....)2
m

mN   , are presented. The odd-indexed output components of DST-II are realized using 

simple recursive relations. The DST-IV is computed from DCT-II and DST-II sequences, each of length N/2.  

 The rest of the paper is organized as follows. The proposed radix-2 algorithm for DST-II is presented in 

Section-II. An example for realization of DST-II of length N = 8 is given in Section-III. The proposed radix-2 

algorithm for type-IV DST is presented in Section-IV.  Conclusion is given in Section-V.   

 

II. PROPOSED RADIX-2 ALGORITHM FOR DST-II 

Let ( ),1 ,x n n N  be the input data array. The type-II DST is defined as 

1
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where ,  
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The ( )
II

kY values represent the transformed data. Without loss of generality, the scale factors in (1) are 

ignored in the rest of the paper. After ignoring scale factors, (1) can be written as 
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                                                                  for 1,2,....,k N . 

When N   2
m ( 2,3,...)m  , (2) can be written as 
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Let 

( ) ( ) ( 1 )P n x n x N n           for even k                                                                                              (4) 

and  

( ) ( ) ( 1 )Q n x n x N n            for odd k                                                                                            (5) 

Using (4) and (5) in (3), the even output components (2 )
II

kY  and odd output components (2 1)
II

kY   of 

DST-II are given by 
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Equation (7) can also be written as 
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Using (7) and (8) in (9), we obtain 
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From (9), we have 
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(2 1) ( ) (2 1)
II II

k R k kY Y                                                                                                             (12) 

The odd output components of DST-II can be realized using the recursive relation (12) and the even output 

components can be realized using (6). 

 

III. EXAMPLE FOR REALIZING DST-II OF LENGTH N = 8 

To clarify the proposal, the output data sequence   ( ); 1,2,...,8
II

k kY   is realized from the input data 

sequence   ( ); 1,2,...,8x n n   for DST-II of length 8N  . 

 

3.1 Procedure for realizing odd output components of DST-II 

Putting 0k  in (9), we get  

(0) (1) ( 1)
II II

R Y Y                                                                                                                           (13) 

From (7), we have for 0k    
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Putting  0k   in (8), we obtain 
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From (14) and (15), we get 

( 1) (1)
II IIY Y                                                                                                                                      (16) 

Using (16) in (13), we have 

1
(1) (0)

2II
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Putting  1,2&3k   in (12), we obtain 

(3) (1) (1)
II II

RY Y                                                                                                                              (18) 
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For k =0 and N = 8, (11) can be expressed as 
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Using (21) in (17), we get 
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Putting k=1 and N = 8 in (11), we obtain 
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where 

1
2cos

8
C
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Putting k = 2 and N = 8 in (11), we have 

21 3 5 7
(2) (1) (2) (3) (4)R Q S Q S Q S Q S C    

 
                                                           (24) 

where 

                         
2
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8 4
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Similarly, putting k = 3 and N = 8 in (11), we obtain 

3 11 7 5 3
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For 8& 1,2,3,4N n  , we have from (5) 

(1) (1) (8)Q x x   

(2) (2) (7)Q x x                                                                                                                                      (26) 

(3) (3) (6)Q x x   

(4) (4) (5)Q x x   

The odd output components (1), (3), (5) & (7)
II II II IIY Y Y Y  of DST-II can be realized using 

(22),(23),(24),(25) and (26)along with the recursive relations (18),(19) and (20) as shown in the data flow 

diagram of Fig.1. 

 
Figure 1: Signal flow graph for odd output components of DST-II of length N=8. 
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3.2 Procedure for realizing even output components of DST-II  

Putting successively 1,2,3,4k   in (6), we get the following expressions for 8.N       

   
2 6
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P P P PS SY                                                                                        (27) 
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For 8& 1,2,3,4N n  , we have from (4) 
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The even output components (2), (4), (6) & (8)
II II II IIY Y Y Y  of DST-II can be realized using 

(27),(28),(29),(30) and (31) as shown in the data flow diagram of Fig. 2. 

 

Figure 2: Signal flow graph for even output components of DST-II of length N=8. 















  

16
sin

n
Sn

 

 

IV. PROPOSED RADIX-2 ALGORITHM FOR DST-IV 

The type-IV DST for the input data sequence  ( ); 1,2,....,x n n N  is defined as 
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The ( )
IV

kY values represent the output data. 
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The type-II DCT for the input data sequence   ( ); 1,2,....,x n n N  is defined as 
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Taking ( 2)2
m

mN   in (32), even and odd output components of DST-IV can be written as
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Where  ( )T k  represents the DCT-II of  ( )u n  of length 2N   and ( )W k  represents DST-II of ( )v n  of 

length  2N  . 

 

Using (36) in (38)   and (37) in (39), we obtain 
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( )cos ( 1 )sin sin

2 4 4 2

N

n

N n n n
W x n x N n

N N

  


           
           

        
               (48) 

Putting 2k N  in (34), we get 

/2

1

(2 1)(2 1) (2 1)(2 1)
( ) ( )sin ( 1 )cos

4 4

N

IV n

n N n N
N x n x N n

N N
Y

 


        
       

    


          

 (49) 

Taking a simple example for 4N   , it can easily be proved from (48) and (49) that 

( )
2IV

N
N WY

 
  

 
                                                                                                                                 (50) 

( )T k  in (38) and ( )W k  in (39) can be computed using ( )u n  and ( )v n  given in (36) and (37) respectively. 

Then the even and odd components of DST-IV of length ( 2)2
m

mN  can be realized using (41),(43),(47) 

and (50) as shown in the block diagram of Fig. 3. 
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Figure 3. Block diagram of realization of DST-IV of length  22  mN m
 

 

V. CONCLUSION 
Radix-2 algorithms for computing type-II DST and type-IV DST, each of length N = 2

m
 (m=2,3,….), are 

presented in this paper.  In the proposed method for DST-II, the odd-indexed output components are realized 

using simple recursive relations. The recursive structures require less memory and are suitable for parallel VLSI 

implementation. Signal flow graph for realization of DST-II of length N = 2
3
 is given. The DST-IV of length N 

is computed using DST-II and DCT-II sequences, each of length N/2. A block diagram for computation of 

radix-2 DST-IV algorithm is shown. 
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